For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events can become critical from design perspective. In a numerical wave tank, extreme waves can be generated through focussed waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a pre-selected location and time. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface shows good agreement with the measurements from experiments. In further computations, the wave impact of the focussed waves on a vertical circular cylinder is investigated. The focussed wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave-structure interaction problems in particular and for free surface flows in general. The open-source CFD code REEF3D solves the three-dimensional Navier-Stokes equations on a staggered Cartesian grid. Solid boundaries are taken into account with the ghost cell immersed boundary method. For the discretization of the convection terms of the momentum equations, the conservative finite difference version of the fifth-order WENO (weighted essentially non-oscillatory) scheme is used. For temporal treatment, the third-order TVD (total variation diminishing) Runge-Kutta scheme is employed. For the pressure, the projection method is used. The free surface flow is solved as two-phase fluid system. For the interface capturing, the level set method is selected. The level set function can be discretized with high-order differencing schemes. This makes it the appropriate solution for wave propagation problems based on Navier-Stokes solvers, which requires high-order numerical methods to avoid artificial wave damping. The numerical model is fully parallelized based on the domain decomposition, using MPI (message passing interface) for internode communication.

This content is only available via PDF.
You do not currently have access to this content.