A time-domain seakeeping numerical model based on a computational fluid dynamics (CFD) software FINE/Marine has been developed for nonlinear steady and unsteady viscous flows. Simulation of multi-phase flows around a Wigley hull with forward speed is performed by solving the Reynolds-average Navier-Stokes (RANS) and continuity equations with k-ω (SST-Menter) turbulence model. The water free surface is captured by Blend Reconstruction Interface Capturing Scheme (BRICS). Both steady and unsteady problems including wave-making, radiation and diffraction problems are simulated. Ship waves generated by the Wigley model advancing at a constant forward speed in calm water or incident waves are computed. The numerical results including the wave-making resistance and wave patterns for steady problem, hydrodynamic coefficients and forces for unsteady problems are illustrated and compared with experimental measurements in good agreement. It is confirmed that the present numerical model has the capability of evaluating the seakeeping performance of ships.

This content is only available via PDF.
You do not currently have access to this content.