The main purpose of the study is to investigate the breaking wave interaction with a group of four circular cylinders. The physical process of wave breaking involves many parameters and an accurate numerical modelling of breaking waves and the interaction with a structure remain a challenge. In the present study, the open-source (Computational Fluid Dynamics) CFD model REEF3D is used to simulate the breaking wave interaction with the multiple cylinders. The numerical model is based on the incompressible Reynolds Averaged Navier-Stokes (RANS) equations, the level set method for the free surface and the k–ω model for turbulence. The model uses a 5th-order conservative finite difference WENO scheme for the convective discretization and a 3rd-order Runge-Kutta scheme for time discretization.

The numerical model is validated with experimental data of large-scale experiments for the free surface elevation and the breaking wave force on a single cylinder. A good agreement is seen between the numerical results and experimental data. Two different configurations with four cylinders are examined: in-line square configuration and diamond square configuration. The breaking wave forces on each cylinder in the group are computed for the two cases and the results are compared with the breaking wave force on a single isolated cylinder. Further, the study investigates the water surface elevations and the free surface flow features around the cylinders. In general, the cylinders in both configurations experience the maximum forces lower than the maximum force on a single cylinder. The results of the present study show that the interference effects from the neighbouring cylinders in a group strongly influence the kinematics around and the breaking wave forces on them.

This content is only available via PDF.
You do not currently have access to this content.