This paper develops an extension to the body-exact strip theory of Bandyk, Beck, and Zhang [1–8], focused on improved prediction of forward-speed effects. One of the known limitations of standard strip theory is the treatment of forward speed terms. The free surface boundary conditions completely neglect the forward speed, which is usually justified by the argument of high-frequency oscillations. The pressure equation on the body includes a speed-dependent term that must computed, most commonly using the Ogilvie-Tuck theorem or numerical approximations. The strip theory variation described here circumvents these deficiencies by applying the 2D+T approach. The model assumes that each two-dimensional frame, in which a boundary value problem (BVP) is solved, remains fixed relative to an earth-fixed frame. The numerical model is based on a time-domain Rankine source method, using the same body-exact approximation as described in earlier work [1]. A suitable acceleration potential BVP is derived. Added mass and damping coefficients are calculated for two Wigley hulls, using the the standard body-exact approach and forward-speed 2D + T variant, and compared to existing model test and numerical data.

This content is only available via PDF.
You do not currently have access to this content.