Motions of high-speed displacement ships in waves have been predicted based on a body-exact strip-theory method in the time domain (2D+t). Nonlinear body boundary conditions were applied on instantaneous wetted surfaces. Linear boundary conditions were used on the free surface so that the 2D transient free surface Green function can be employed. Interactions among the strips of the ship hull were considered. A far field method was adopted to compute the hydrodynamic forces. Validation studies have been carried out for two Wigley hull ships in regular waves. Numerical results were compared with experimental data and those by other numerical methods.

This content is only available via PDF.
You do not currently have access to this content.