There are challenges in the prediction of low-frequency load and especially the resonant free surface elevation between two bodies in close proximity. Most of the linear potential-flow based seakeeping programs currently used by the industry over-predict the free surface elevation between the vessels/bodies and hence the low-frequency loadings on the hulls. Various methods, such as the lid technique, have been developed to suppress the unrealistic values of low-frequency forces by introducing artificial damping coefficients. However, without the experimental data, it is challenging to specify the coefficients.

This paper presents the experimental studies of motions of two bodies with various gaps and the wave elevations between bodies. Model tests were performed at the towing tank of Memorial University. The objective was to provide benchmark data for further numerical studies of the viscous effect on the free surface predictions. The experimental data were compared with numerical solutions based on potential flow methods. The effect of tank walls were examined. Preliminary uncertainty analysis was also carried out.

This content is only available via PDF.
You do not currently have access to this content.