This paper presents a preliminary analysis of Offshore Floating Wind Turbine system subjected to coupled wind and wave loads in time domain. Floating Wind Turbine system in deep water has the great potential in exploiting renewable wind energy in the near future due to the energy and environmental issues. Distinct structural arrangements determine the complexity of motion behaviors and loading characteristics of OFWTs. The aerodynamic loads play a dominant part in the loading pattern, which is distinguished from traditional floating offshore oil and gas structures. To simulate the response induced by wind and wave, a calculation scheme is proposed containing the coupling between aerodynamics and hydrodynamics. Accordingly, a set of time-domain numerical codes is developed and presented. With the integrated aero and hydro dynamic analysis codes, simulations are conducted to obtain performance of Hywind system. Cases for decay, white noise, wind only and the coexistence of wind and wave are investigated. The results are compared to the test statistics collected from a model test, which was carried out in Deepwater Offshore Basin in Shanghai Jiao Tong University.

This content is only available via PDF.
You do not currently have access to this content.