There are potential offshore applications where renewable energy and more distributed power sources could supplement or replace costly equipment upgrades for additional power supply, or costly fuel operating costs. Renewable energy technologies can also be employed in lieu of expensive power umbilicals to provide power to subsea pumps for long distance tiebacks in deepwater. For example, power umbilicals alone required to provide 69kV to subsea pumps in deepwater could be upwards of $300MM for 100 mile long distance tie-backs. A renewable energy source, with storage, integrated into that system could significantly reduce both the CAPEX and OPEX costs.
In 2013, Chevron performed an in-depth evaluation of a Renewable Energy plus Compressed Air Energy Storage and Regeneration system for a 2.6MW application. For the purpose of that study, a floating wind turbine in 365m water depth off the coast of Oregon was evaluated as the energy source as the base case. The system was found to be feasible with initial CAPEX costs replaced within 12 years of operations as compared to installation of a diesel power generation system and the requisite fuel required to run the equipment.
This paper provides a description of the OCAES system, and discusses potential applications in support of the offshore oil and gas industry.