Flow Induced Motions (FIM) of a single-cylinder VIVACE Converter is investigated using two-dimensional Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the Spalart-Allmaras turbulence model at Reynolds numbers (30,000 ≤Re≤120,000, 5.50≤U*≤9.85) in the TrSL3 flow regime. Computational results compare very well with experimental data. With implementation of Passive Turbulence Control (PTC), the VIVACE Converter can harness hydrokinetic energy from currents or tides over an expanded range of FIM synchronization, including Vortex Induced Vibrations (VIV) and galloping. The General Grid Interface (GGI) with topological mesh changes is proved to be an effective method for handling high-amplitude FIM response. Within the test Reynolds number range, five regions are clearly observed, including the no-FIM range, the VIV initial branch, the VIV upper branch, transition from VIV to galloping, and galloping. The power envelope calculated based on the CDF simulations for FIM agrees very well with the corresponding power envelope generated based on experiments. The range between VIV and galloping can be eliminated by adjusting the spring-stiffness and the harnessing damping-ratio. This is verified by both experiments and numerical simulation.

This content is only available via PDF.
You do not currently have access to this content.