Within Heerema Marine Contractors’ (HMC) global installation analysis scope, the sidestep procedure of structures (e.g. in-line tee structure, 2nd end FLET structure or upper riser assembly structure) is identified that might require global buckling analysis. During a side-step procedure a structure is skidded out of the J-Lay tower while free-standing via the stem pipe on the hang off collar of the last hex-joint. While skidding the tower cannot support the structure vertically, only horizontally via a side step clamp higher up in the tower. Hence the stem pipe could buckle globally under the structure weight. The weight of the structure causes compression in the stem pipe and a center of gravity offset of the structure with respect to the pipe centerline causes a bending moment leading to potential global buckling.
A global buckling analysis must be performed to check this load case. The purpose of this paper is to provide validation for the use of Flexcom for performing global buckling analysis for the side-step procedure of structures in the J-Lay tower. In order to prove that Flexcom can indeed model global buckling behavior with sufficient accuracy, the critical buckling load obtained is validated using the FE packages Abaqus and Ansys. This comparison serves as validation, not only for the use of Flexcom, but also for the method used to determine the critical buckling load in Flexcom.
The analysis methodology used to assess a pipeline or riser for global buckling behavior is updated using the benefits of Flexcom. The use of Flexcom for global buckling analysis is more efficient, due to the ease and simplicity of modeling, and allows dynamic load cases, due to environmental loads and vessel motions, to be analyzed. Hence the potential benefit of performing global buckling analysis in Flexcom.