This paper describes the analysis of the mechanical behavior of the plastic pipe reinforced by cross helically winding steel wires (PSP) under pure internal pressure. PSP is a new kind of composite pipe developed rapidly in China recently and it consists of an inner high-density polyethylene (HDPE) layer, several steel wire layers over wrapping the liner and an outer polyethylene coating. To investigate the mechanical properties of steel wire layers, the elastic parameters of the composite monolayer plate are considered as transverse isotropic and derived based on Halpin-Tsai Equations. The stress and strain functions of each layers are obtained using anisotropic elastic mechanical theory and the unknown constants are determined by equilibrium equations and interface conditions. Using ABAQUS, a finite element model (FEM) is established to study the mechanical behavior and failure mode. Results derived from the theoretical method and FEM are presented and compared. Simplified engineering formula of burst pressure is also obtained. The effect of winding angle on PSP is also discussed by parametric analysis. Values of burst capacity predicted from the theoretical method, FEM and simplified engineering formula are in great agreement with the experimental results.

This content is only available via PDF.
You do not currently have access to this content.