Umbilical which links the top floater and the subsea devices provides control functions through electrical cables and hydraulic remote transmission. They are treated as the “lifeline” of the subsea production system for offshore oil and gas exploitation. During operation, umbilical needs to undertake self-weight and periodical load due to the ocean environment. Meanwhile, the heat during power transmission in electric cable is released to the umbilical body, which influences the mechanical properties and optical transmission in the cable. However, there are a number of components and many kinds of sectional arrangement for the umbilical. So the sectional design with multiple components needs to be solved as a multidisciplinary optimization problem. From the mechanical point of view, the umbilical structure should be designed with more compacted and symmetric layout to obtain even probability of resistance to loads and reduce structural stress to improve its fatigue performance. Concerning thermal effect, these units should be arranged to dissipate the heat easily to avoid the influence on the functional and structural components. In this paper, compactedness, symmetry and temperature distribution are quantified through introducing corresponding indices. Then multidisciplinary optimization framework is established. Particle Swarm Optimization (PSO) intelligent algorithm is adopted to carry out the optimization to obtain the optimal solution, which is far superior to the initial design. The optimization design strategy is proved to be effective and efficient by some numerical examples, which provides reference for design of umbilical cables.

This content is only available via PDF.
You do not currently have access to this content.