Since ship maneuverability is a vitally important characteristic of ship design, several experimental techniques to determine ship maneuverability are recommended, among which using the planar motion mechanism (PMM) test for captive model in a circulating water channel (CWC) has become a new and effective way for captive model tests. This paper uses the numerical method to study the viscous hydrodynamic forces acting on a KVLCC2 model. The viscous flow around the model and its hydrodynamic forces in the oblique towing, pure sway and pure yaw test are simulated by CFD, in which the steady and unsteady RANS equations in conjunction with a RNG k-ε turbulence model are solved. By applying the dynamic mesh technique, the motion of pure sway is simulated. As a key technique for realization of pure yaw motion a new method combining the layering and local remeshing that treats restricted water region problem like in a CWC is developed. Accuracy of the proposed numerical method is confirmed by comparing the calculated hydrodynamic forces with the measured one. Then hydrodynamic derivatives of ship maneuvering movements are analyzed, and used in maneuvering prediction which is based on MMG model for turning test. Results show that the hybrid dynamic mesh technique is a practically efficient way to simulation of the pure yaw motion in CWC, which balances computational accuracy and efficiency. It also demonstrates that the present numerical model gives satisfactory results on PMM tests and maneuvering motions in terms of accuracy and it can be an economical method for engineering practices.
Skip Nav Destination
ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
May 31–June 5, 2015
St. John’s, Newfoundland, Canada
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-5648-2
PROCEEDINGS PAPER
Maneuvering Prediction of a VLCC Model Based on CFD Simulation for PMM Tests by Using a Circulating Water Channel
Han Liu,
Han Liu
Shanghai Jiao Tong University, Shanghai, China
Search for other works by this author on:
Ning Ma,
Ning Ma
Shanghai Jiao Tong University, Shanghai, China
Search for other works by this author on:
Xiechong Gu
Xiechong Gu
Shanghai Jiao Tong University, Shanghai, China
Search for other works by this author on:
Han Liu
Shanghai Jiao Tong University, Shanghai, China
Ning Ma
Shanghai Jiao Tong University, Shanghai, China
Xiechong Gu
Shanghai Jiao Tong University, Shanghai, China
Paper No:
OMAE2015-41548, V002T08A041; 8 pages
Published Online:
October 21, 2015
Citation
Liu, H, Ma, N, & Gu, X. "Maneuvering Prediction of a VLCC Model Based on CFD Simulation for PMM Tests by Using a Circulating Water Channel." Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. Volume 2: CFD and VIV. St. John’s, Newfoundland, Canada. May 31–June 5, 2015. V002T08A041. ASME. https://doi.org/10.1115/OMAE2015-41548
Download citation file:
40
Views
Related Proceedings Papers
Related Articles
Effect of Side Wind on a Simplified Car Model: Experimental and Numerical Analysis
J. Fluids Eng (February,2009)
Comprehensive Approach to Verification and Validation of CFD Simulations—Part 2: Application for Rans Simulation of a Cargo/Container Ship
J. Fluids Eng (December,2001)
Motion Prediction of a Single-Point Moored Tanker Subjected to
Current, Wind and Waves
J. Offshore Mech. Arct. Eng (February,1990)
Related Chapters
CFD Simulations of a Mixed-flow Pump Using Various Turbulence Models
Mixed-flow Pumps: Modeling, Simulation, and Measurements
Two Advanced Methods
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Introduction
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow