Drilling riser systems are subjected to hydrodynamic loads from vessel motions, waves, steady currents and vortex-induced motions. This necessitates a proper structural analysis during the design phase using techniques such as finite element analysis (FEA). Common approaches within the FEA packages approximate the individual components including BOP/LMRP (Blow-Out Preventer/Lower Marine Riser Package), subsea tree and wellhead using 2D or 3D beam/pipe elements with approximated effective mass and damping coefficients. Predicted system response can be very sensitive to the mass, hydrodynamic added mass and drag of the large LMRP/BOP/Tree components above the wellhead. In the past, gross conservative estimates on the hydrodynamic coefficients were made and despite this, design criteria were generally met. With the advent of large sixth-generation BOP stacks with the possibility of additional capping stacks, such approximations are no longer acceptable. Therefore, the possibility of relying on the more detailed capability of computational fluid-structure interaction (FSI) analysis for a better calculation of these coefficients is investigated. In this paper, we describe a detailed model developed for a 38:1 scaled down BOP and discuss the subsequent predictions of the hydrodynamic coefficients. The model output is compared against the data from the concurrent tests conducted in an experimental tow tank. The comparison demonstrates that computational FSI can be an effective and accurate tool for calculating the hydrodynamic coefficients of complex structures like BOPs.

This content is only available via PDF.
You do not currently have access to this content.