In this paper, a study is conducted on wind and metocean loads and associated structural dynamics of a 13.2-MW large offshore wind turbine in Western Gulf of Mexico (GOM) shallow water. The offshore wind turbine considered includes a rotor with three 100-meter long blades and a mono-tower support structure. Natural frequencies and mode shapes of the blades and the mono-tower are determined first and used subsequently to establish a Campbell diagram for safe wind turbine operation. The results show that hydrodynamic added mass has little effect on the natural frequencies and mode shapes of the support structure but it introduces, in part, appreciable effects on loads carried by the turbine when the blades are pitched at wind speeds above the rated speed. Also determined, for normal operation and extreme metocean conditions (i.e., 100-year return hurricanes), are normal thrust on the wind rotor, blade-tip displacement, overturning moment and tower-top displacement sustained by the wind turbine.

This content is only available via PDF.
You do not currently have access to this content.