There are a number of design challenges facing mooring systems of floating offshore wind turbine (FOWT) platforms in an offshore environment. Some unique aspects of the FOWT industry should be considered when examining applicability of established offshore mooring practices. Important among these are: economy and cost effectiveness; light weight minimal platforms; and water depths ranging from 50–300 m. A lighter displacement platform in shallow water, supported by lines with light to moderate pre-tension can result in a higher probability of slack line events and hence snap loads during re-engagement. Such loads can result in shock on the line material and considerably reduce the fatigue life. Such events have the potential to occur in various sea states, and not necessarily limited to extreme conditions. These conditions will be dependent on structure resonant motions, which are influenced by wind loads and moments, wave conditions and mooring line properties. Model tests of typical concepts for FOWT reported in literature have shown occasional slack line episodes.

This paper is a review of literature on snap load occurrence in marine applications, including lifting and lowering operations, ROV and diving bell operations. This paper presents a case study of a FOWT. Special focus is on mooring systems which are affected by impact load conditions. Criteria are reviewed and consequences are documented.

This content is only available via PDF.
You do not currently have access to this content.