In this article a study has been carried out to explore the feasibility of a wave propagation model that is able to predict the wave field in a deterministic sense, based on remote observations of the sea surface. The surface is modulated in order to simulate images created by a marine radar operating at grazing incidence. The developed model uses an integral equation method, utilizing the frequency domain Green’s function which fulfills the linear free surface boundary condition. Synthesized observations of either the wave elevation or surface tilt at the source points are used to initialize the wave model. At each of the locations of the added remote free surface panels, time traces of the observed wave elevation or surface tilt can be recorded. A Fourier Transform (FFT) of these time traces yields the frequency domain description of the boundary condition that has to be satisfied by the wave potential. The derived Green’s function for the free surface source panels is then used to solve the source of strength at these panels. Once values have been found for the sources, the potential, and thus the surface elevation, may be calculated at the ship’s location.

This content is only available via PDF.
You do not currently have access to this content.