This paper presents methodologies and some results of a numerical and experimental program to evaluate the effects of static azimuthing conditions on the propulsive characteristics of a puller podded propulsor in open water. In the experimental effort, the model propulsor was instrumented to measure thrust, torque and rotational speed of the propeller, and three orthogonal forces and moments, and azimuthing angle of the pod. The experimental results included the bare propeller (ahead only) and the combined propeller and pod over a range of advance coefficients at various static azimuthing angles in the range of −180° to 180°.

A complementary numerical study is being carried out to predict the hydrodynamic forces of podded propulsor in static azimuthing conditions. A Reynolds-Averaged Navier Stokes solver is used to predict the propulsive performance of the bare propeller as well as the podded propulsor system. The thrust and torque for the bare propeller were compared to the corresponding measurements. The propeller thrust and torque as well as the loads on the pod in straight-ahead condition and at static azimuthing angles were then compared with the measurements. Preliminary analysis demonstrates that the RANS solver could predict the performance coefficients of the bare propeller as well as the podded propulsor in straight-ahead and static azimuthing angles in puller configurations.

This content is only available via PDF.
You do not currently have access to this content.