The global hull motion performance of the HVS semisubmersible for dry tree application is investigated with model tests. The HVS semisubmersible, which has been validated for low heave motion and VIM (Vortex Induced Motion) response, was modified for dry tree application. As a base case, the modification includes a keel plate with riser keel guides at the level of the pontoons. The keel plate is optimally designed to increase the hull heave period to compensate for the heave period reduction in the HVS semisubmersible due to the riser tensioners for the dry tree application. The plate also provides additional viscous damping that decreases the heave response at the heave natural period.

The model tests were performed to investigate the in-place hull motion performance for the Gulf of Mexico environmental conditions. The pneumatic riser tensioners were modeled using a spring with dual stiffness. Because of the water depth limit in the wave basin, a truncated mooring was used to simulate the full scale prototype mooring system.

An alternate modification to the HVS semisubmersible that includes pontoon plates was also tested and the measured response was compared to the response of the base case. The measured hull responses were correlated with MLTSIM, a Technip in-house nonlinear time-domain 6-DOF motion analysis program.

This content is only available via PDF.
You do not currently have access to this content.