Coastal waves and near-shore currents have been investigated by many researchers. This paper developed a two-dimensional numerical model of near-shore waves and currents to study breaking wave induced current. In the model, near-shore water wave was simulated by a parabolic mild slope equation incorporating current effect and wave energy dissipation due to breaking, and current was simulated by a nonlinear shallow water equation incorporating wave exerted radiation stress. Wave radiation stress was calculated based on complex wave amplitude in the parabolic mild slope equation, and this result in an effective method for calculating wave radiation stress using an intrinsic wave propagation angle that differs from the ones of using explicit wave propagation angle. Wave and current interactions were considered by cycling the wave and current equation to a steady state. The model was used to study waves and wave-induced longshore currents at the Obaköy coastal water which is located at the Mediterranean coast of Turkey. The numerical results for water wave induced longshore current were validated by measured data to demonstrate the efficiency of the numerical model, and water waves and longshore currents were analyzed based on the numerical results.

This content is only available via PDF.
You do not currently have access to this content.