A viscous 3D numerical wave basin for high nonlinear waves was developed based on Smoothed Particle Hydrodynamics (SPH) method. The computational accuracy of SPH method is mainly improved by introducing the Corrective Smoothed Particle Hydrodynamics Method (CSPM) and a novel pressure correction scheme. The incident waves are generated from the inflow boundary by prescribing a velocity profile of the flap-type wavemaker motions, and the outgoing waves are numerically dissipated inside an artificial damping zone located at the end of the basin. Moreover, the parallelization of the improved 3D SPH scheme has been carried out using a hybrid MPI-OpenMP programming, together with a dynamic load balancing strategy to improve the computational efficiency. The generation and propagation of regular wave and solitary wave have been simulated. Wave forces induced by regular wave acting on a large-diameter circular cylinder and solitary wave passing over a submerged breakwater are also presented to verify the accuracy of SPH model. In addition, several computing cases of different particle resolutions are investigated and a high parallel efficiency is obtained.

This content is only available via PDF.
You do not currently have access to this content.