Mooring line damping plays an important role to the body motion of moored floating platforms. Meanwhile, it can also make contributions to optimize the mooring line system. Accurate assessment of mooring line damping is thus an essential issue for offshore structure design. However, it is difficult to determine the mooring line damping based on theoretical methods. This study considers the parameters which have impact on mooring-induced damping. In the paper, applying Morison formula to calculate the drag and initial force on the mooring line, its dynamic response is computed in the time domain. The energy dissipation of the mooring line due to the viscosity was used to calculate mooring-induced damping. A mooring line is performed with low-frequency oscillation only, the low-frequency oscillation superimposed with regular and irregular wave-frequency motions. In addition, the influences of current velocity, mooring line pretension and different water depths are taken into account.

This content is only available via PDF.
You do not currently have access to this content.