This paper presents computational results for predicting earthquake-generated tsunami from a developed integrated computational framework. The computational framework encompasses the entire spectrum of modeling the earthquake-generated tsunami source, open-sea wave propagation, and wave run-up including inundation and on-shore effects. The present work develops a simplified source model based on pertinent local geologic and tectonic processes, observed seismic data (i.e., data obtained by inversion of seismic waves from seismographic measurements), and geodetic data (i.e., directly measured seafloor and land deformations). These source models estimated configurations of seafloor deformation used as initial waveforms in tsunami simulations. Together with sufficiently accurate and resolved bathymetric and topographic data, they provided the inputs needed to numerically simulate tsunami wave propagation, inundation and coastal impact. The present work systematically analyzes the effect of the tsunami source model on predicted tsunami behavior and the associated variability for the 2011 Tōhuku-Oki tsunami. Simulations were carried out for the 2011 Tōhuku -Oki Tsunami that took place on March 11, 2011, from an MW 9.1 earthquake. The numerical simulations were performed using the fully nonlinear Boussinesq hydrodynamics code, FUNWAVE-TVD (distributed by the University of Delaware). In addition, a sensitivity analysis was also carried out to study the effect of earthquake magnitude on the predicted wave height. The effect of coastal structure on the wave amplification at the shore is also studied. Simulated tsunami results for wave heights are compared to the available observational data from GPS (Global Positioning System) at the central Miyagi location.

This content is only available via PDF.
You do not currently have access to this content.