Sonar provides vessels with a sensory system to detect and identify still and moving obstacles. In shallow water both active and passive sonar meet their limits. Acoustical methods exist, aiming at supporting sonar systems by means of digital signal processing, or, coming from the field of biomimetics, imitating echolocation principles of marine animals. This paper introduces a sensor system combining these approaches by the use of a vector sensor array applying Near-field Acoustical Holography (NAH) imitating the Lateral Line organ (LL) of fish; a passive method to supplement active and passive sonar. LL is able to localize obstacles due to their dipole-like water displacement by comparing low-frequency water accelerations distributed along the whole body. In contrast to pressure, accelerations are highly evanescent and do not propagate into the far-field. Thus LL does not suffer under reverberation or scattering. The performance of the proposed NAH-based LL-sensor is tested by a computer simulation of a source in absence and in presence of a disturbing source. The LL-sensor has proven to be more robust than pressure detection methods like beamforming and conventional NAH.

This content is only available via PDF.
You do not currently have access to this content.