Pipe-In-Pipe (PIP) systems are increasingly used in subsea oil and gas production where a low Overall Heat Transfer Coefficient (OHTC) is required. A PIP system is primarily composed of an insulated inner pipe which carries the production fluid and an outer pipe that protects the insulation material from the seawater environment. This provides a dry environment within the annulus and therefore allows the use of high quality dry insulation system. In addition, from a safety point of view, it provides additional structural integrity and a protective barrier which safeguards the pipeline from loss of containment to the environment.
Genesis has designed a number of PIP systems in accordance with the recognized subsea pipeline design codes including DNV-OS-F101 [1]. In section 13 F100 of the 2013 revision, a short section has been included in which PIP systems are discussed and overall design requirements for such systems are provided. It has also been stated that the inner and outer pipes need to have the same Safety Class (SC) unless it can be documented otherwise.
This paper looks at the selection of appropriate SC for the outer pipe in a design of PIP systems based on an assessment of different limit states, associated failure modes and consequences. Firstly, the fundamentals of selecting an acceptable SC for a PIP system are discussed. Then, different limit states and most probable failure modes that might occur under operational conditions are examined (in accordance with the requirements of [1]) and conclusions are presented and discussed. It is concluded that the SC of the outer pipe of a PIP system may be lower than that of the inner pipe, depending on the failure mode and approach adopted by the designer.