Global buckling is a behavior observed on subsea pipelines operating under high pressure and high temperature conditions which can jeopardize its structural integrity if not properly controlled. The thermo-mechanical design of such pipelines shall be robust in order to manage some uncertainties, such as: out-of-straightness and pipe-soil interaction. Pipeline walking is another phenomenon observed in those pipelines which can lead to accumulated displacement and overstress on jumpers and spools. In addition, global buckling and pipeline walking can have strong interaction along the route of a pipeline on uneven and sloped seabed, increasing the challenges of thermo-mechanical design.

The P-55 oil export pipeline has approximately 42km length and was designed to work under severe high pressure and high temperature conditions, on a very uneven seabed, including different soil types and wall thicknesses along the length and a significant number of crossings. Additionally, the pipeline is expected to have a high amount of partial and full shutdowns during operation, resulting in an increase in design complexity. During design, many challenges arose in order to “control” the lateral buckling behavior and excessive walking displacements, and finite element analysis was used to understand and assess the pipeline behavior in detail.

This paper aims to provide an overview of the lateral buckling and walking design of the P-55 oil export pipeline and to present the solutions related to technical challenges faced during design due to high number of operational cycles. Long pipelines are usually characterized as having a low tendency to walking; however in this case, due to the seabed slope and the buckle sites interaction, a strong walking tendency has been identified. Thus, the main items of the design are discussed in this paper, as follows: lateral buckling triggering and “control” approach, walking in long pipelines and mitigate anchoring system, span correction and its impact on thermo-mechanical behavior.

This content is only available via PDF.
You do not currently have access to this content.