This study concentrates on the use of materials known as hollow glass spheres, also known as glass bubbles, to reduce the drilling fluid density below the base fluid density without introducing a compressible phase to the wellbore. Four types of lightweight glass spheres with different physical properties were tested for their impact on rheological behavior, density reduction effect, survival ratio at elevated pressures and hydraulic drag reduction effect when mixed with water based fluids. A Fann75 HPHT viscometer and a flow loop were used for the experiments. Results show that glass spheres successfully reduce the density of the base drilling fluid while maintaining an average of 0.93 survival ratio, the rheological behavior of the tested fluids at elevated concentrations of glass bubbles is similar to the rheological behavior of conventional drilling fluids and hydraulic drag reduction is present up to certain concentrations. All results were integrated into hydraulics calculations for a wellbore scenario that accounts for the effect of temperature and pressure on rheological properties, as well as the effect of glass bubble concentration on mud temperature distribution along the wellbore. The effect of drag reduction was also considered in the calculations.

This content is only available via PDF.
You do not currently have access to this content.