Pipe collapse is a primary design consideration for deep water locations and offshore areas with sharp seabed curvatures or spans, where bending reduces collapse resistance due to ovalization. Previous numerical and experimental work has shown that collapse resistance of steel pipes can be enhanced significantly by using compression instead of expansion during the final stage of the pipe forming process.
ExxonMobil has recently undertaken a rigorous numerical modeling and experimental testing program to investigate the collapse resistance of compressed (JCOC) steel pipes under combined loading of external pressure and bending, and this paper presents the main results from the program. The first part of the paper presents results of sensitivity studies from three dimensional (3D) finite element analyses (FEA) of the pipe forming process, and the second part focuses on the collapse modeling under combined loading as well as a comparison of the numerical results with the experiments. The results indicate that the collapse envelope for steel pipes under combined external pressure and bending can be enhanced by up to 35% by adopting pipe compression rather than expansion as the final step of the forming process.