This paper introduces a numerical method to predict global hull girder loads of sea-going vessels, taking into account the structural elasticity. A field method based on a Finite Volume discretisation is applied to simulate the nonlinear rigid ship motions and provides the external loads at the hull surface. The structural response is computed in a full transient 3D-Finite-Element Analysis. The lowest global structural mode shapes and eigenfrequencies are covered by the 3D-FE model. The mapping between the Finite Volume mesh and Finite Element grid, is performed by the Mesh-Based Code Coupling Interface (MpCCI). As long as only global vertical bending modes are considered, simplified beam models may sufficiently cover the structural response. However, the use of the 3D-FE model is motivated by the prediction of the global torsional and local loads that are influenced by hydroelastic effects. A 1-way coupling method is applied. To account for hydromass effects, the Finite-Element model is enhanced by acoustic elements. Acoustic wave equations are solved to simulate the sound wave propagation in water and to obtain realistic eigenfrequencies of the wetted hull. Structural and hydrodynamic damping is controlled by the Rayleigh-Damping method. Simulations are performed for an ultra large container vessel sailing in regular head waves. The computed time histories of the vertical bending moment are compared with experimental data and with numerical simulations using a strong 2-way coupling simulation that employs a Finite-Element Timoshenko-Beam.

This content is only available via PDF.
You do not currently have access to this content.