For an offshore LNG project situated in the estuary of the Rio de la Plata nearby Montevideo, Uruguay, it was required to verify the deterministic design of the protective rubble mound breakwater and the jetty infrastructure with a level three probabilistic design. Therefore, in first instance extreme site conditions were required both in front of and behind the breakwater.

To obtain these conditions, the first step is to extrapolate the offshore variables in order to translate them to the breakwater location. All the possible combinations of extreme wind, water level and waves are quantified with a probability of occurrence. A combination of univariate extreme value distributions, copula’s and regression is used to describe the multivariate statistical behaviour of the offshore variables. The main variable is the wind velocity, as in the area of concern extreme wave conditions are wind driven. The secondary variable is water level. Wind velocity and water levels are only correlated for some wind directions. For these directions, wind velocity and water level extreme value distributions are linked through a multivariate Gumbel Copula. The wave height at the model boundaries was taken into account by a regression function with the extreme wind velocity at the offshore location and the wave period by a regression function with the wave height.

This way 1515 synthetic events were selected and simulated with the spectral wave model SWAN, each of which a frequency of occurrence is calculated for. However, due to refraction and diffraction effects of the approach channel (in the area of concern water depths are limited to about 7 m and the navigation channel has a depth of about 14 m), the port basin and the breakwater itself, the spectral wave model SWAN is not sufficient to accurately calculate the local wave conditions in the entire area of interest. Therefore a non-linear Boussinesq wave model (i.e. Mike 21 BW) was set up in addition, using input from the spectral model at the boundary and including the navigation channel of more than 12 km long. Combining both models, significant wave heights are obtained on both the seaward side and the leeside of the breakwater with corresponding frequencies of occurrence. This approach allows the determination of conditional return periods and generates the site conditions required for a probabilistic level three design of the breakwater and the jetty infrastructure taking for example the joint probabilities between waves and water levels fully into account as needed for overtopping or failure calculations.

This content is only available via PDF.
You do not currently have access to this content.