This paper focuses on the post-ultimate strength behavior of sandwich plates. With widely application of the laminate on the ship and offshore structures, the post-ultimate strength behavior is becoming more important for safety evaluation of structures. Since the post-ultimate strength behavior can reflect the collapse extent of sandwich plate when subjected to extreme loads. A sandwich plate was modeled by FEM, its load-displacement relationship was obtained and its collapse characteristics were analyzed. The load-displacement relationship indicates its post-ultimate strength behavior, which is shown as that the load carrying capacity has a rapidly reduction when the ultimate strength is exceeded, and that the failure modes of the sandwich plate are determined by the parameter of individual layer. The simulation results were validated against experimental results. Conclusions are drawn: the displacement of sandwich plate under axial compression increased slowly before reaching the ultimate strength, once the ultimate strength was exceeded, the loads exerted on the structures sharply decreased with slowly increased displacement until the plate cracked. The simulation results have a good agreement with the experimental results. The mainly failure modes of sandwich plates can be interpreted as delamination between skin & core and core compression fracture, which are typical failure modes in engineering. The stiffness of sandwich structures decreased due to the interlaminar cracking or skin fracture, further the load carrying capacity decreased, which is of significance for guiding the design of sandwich structures.

This content is only available via PDF.
You do not currently have access to this content.