In order to efficiently address complex problems in hydrodynamics, the advances in the development of a new method are presented here. This method aims at finding a good compromise between computational efficiency, accuracy, and easy handling of complex geometries. The chosen method is an Explicit Cartesian Finite Volume method for Hydrodynamics (ECFVH) based on a compressible (hyperbolic) solver, with a ghost-cell method for geometry handling and a Level-set method for the treatment of biphase-flows. The explicit nature of the solver is obtained through a weakly-compressible approach chosen to simulate nearly-incompressible flows. The explicit cell-centered resolution allows for an efficient solving of very large simulations together with a straightforward handling of multi-physics. A characteristic flux method for solving the hyperbolic part of the Navier-Stokes equations is used. The treatment of arbitrary geometries is addressed in the hyperbolic and viscous framework. Viscous effects are computed via a finite difference computation of viscous fluxes and turbulent effects are addressed via a Large-Eddy Simulation method (LES). The Level-Set solver used to handle biphase flows is also presented. The solver is validated on 2-D test cases (flow past a cylinder, 2-D dam break) and future improvements are discussed.

This content is only available via PDF.
You do not currently have access to this content.