Experiments with a flexible and submerged cylinder were carried out to investigate fundamental aspects of risers dynamics subjected to harmonic excitation at the top. The flexible model was designed aiming a high level of dynamic similarity with a real riser. Vertical motion, with amplitude of 1% of the unstretched length, was imposed with a device driven by a servomotor. Four values of the ratio between the exciting frequencies and the first eigenfrequency were investigated, namely ft: fN,1 = 1 : 3; 1 : 1; 2 : 1 and 3 : 1. Cartesian coordinates of 43 monitored points positioned all along the span were experimentally acquired by using an optical tracking system. A simple Galerkin’s scheme applied for modal decomposition, combined with standard Mathieu chart analysis, led to the idenfication of parametric resonances. A curious finding of this paper is that the Mathieu instability may simultaneously occur in more than one mode, leading to interesting dynamic behaviors, also revealed through standard power spectra analysis and displacement scalograms.

This content is only available via PDF.
You do not currently have access to this content.