A global-local analysis methodology based on fluid-structure coupling is used to investigate the mechanical responses of both composite and steel risers. Since the design of the riser system can be a daunting task, involving hundreds of load cases for global analysis, semi-empirical fluid load models are considered for the reduced order computations of full-scale riser models. The structural performance of composite risers under real sea current conditions is investigated systematically and discussed with regard to the practical concerns in full-scale settings. The failure envelops of internal liners are found to be within that of the composite layers, which reveals that the liner is the weakest link for composite riser design. Results show that the composite risers can be more prone to vortex-induced-vibration (VIV) due to their lower structural frequencies. In the present study, the composite riser yields 25.5% higher RMS strains than the steel riser. Placement of buoyancy modules along the riser may be critical for the design against VIV, and our results show that the modules are not recommended at the top region of the riser, especially if a top-sheared current is expected. Instead, it is preferable to implement them at the bottom-half portion of the riser and as a continuously buoyed region rather than short discrete buoys separated with gap spaces.

This content is only available via PDF.
You do not currently have access to this content.