Experimental investigations were conducted on a flexible riser with and without helical strakes. A uniform current was obtained by towing a riser model in a tank, and the vortex-induced vibration (VIV) suppression of strakes with different heights and pitches was studied. The results of the bare riser show that the characteristics of the synchronization of the VIV for a flexible riser have many orders, and the excited mode jumps from one to another abruptly. During the high order synchronization regime, the VIV response decreases with the increased order of the synchronization. The experimental results also indicate that the response characteristics of a bare riser can be quite distinct from those of a riser with helical strakes, and the suppression performance depends on the geometry of the helical strakes. The fatigue damage in the CF direction is of the same order as that in the IL direction for the bare riser. However, for the riser fitted with helical strakes, the fatigue damage in the CF direction is much smaller than that in the IL direction. The experimental results also confirmed that strake height has a greater influence on the VIV response than the strake pitch, and the drag exerted on the riser increases with strake pitch and height.

This content is only available via PDF.
You do not currently have access to this content.