In the present study, the hydrodynamic performance of a typical North Sea dynamic positioning (DP) shuttle tanker consisting of two main propellers, two rudders, and two bow tunnel thrusters is investigated by solving Reynolds-averaged Navier-Stokes (RANS) equations for a viscous flow. The focus of the numerical simulation is on the performance of propellers/rudders and bow tunnel thrusters considering the hydrodynamic interactions between propellers/thrusters, hull and current. The numerical model includes hull, propeller, rudder, bow tunnel thruster and flow field.

First, an analysis of a propeller performance in open water is carried out by calculating the coefficient of thrust, torque, and propeller efficiency. Then, rudders are included in the analysis for the assessment of propeller/rudder performance. The pressure distribution on rudders, rudder’s drag and lift coefficients for different angles of attack, and flow field around the rudder are obtained. The interaction effects between propeller, rudder, ship hull, as well as bow tunnel thruster and ship hull are analyzed by adding detailed ship hull geometry in the computational domain. The tunnel thruster efficiency reduction due to current and ventilation is also analyzed. The presence of current leads to significant changes in the flow velocity and distribution of pressure in the tunnel outflow area as well as significant deflection of the propeller jet emitting from the tunnel. A comparison between Computational Fluid Dynamics (CFD) and model test results of flow features near the tunnel area with various current speeds is presented.

This content is only available via PDF.
You do not currently have access to this content.