Researchers from Petrobras and LAMCSO/COPPE have been involved in the development and implementation of a computational tool, based on Evolutionary Algorithms, for the synthesis and optimization of submarine pipeline routes. In this tool, randomly generated candidate routes are evaluated in terms of several criteria, incorporated in an objective (or fitness) function to take into account the relevant aspects that should be considered in the design of a route.

Previous works described the initial steps taken towards the development of such tool, including the geometrical representation of a route, and some of the terms of the objective function associated with a preliminary, global step of the optimization process (such as total pipeline length, and geographical-topographical issues associated with the route geometry and to the seabed bathymetry and obstacles). Special attention was dedicated to the implementation of On-Bottom Stability (OBS) criteria such as the proposed in the DNV-RP-F109 code.

This work is focused on another aspect related to the structural behavior of the pipe under hydrostatic and environmental loadings; more specifically, fatigue induced by vortex induced vibrations (VIV) on free spans along the candidate routes. Special attention is dedicated to the implementation of the screening criteria proposed in the DNV-RP-F105 code. Case studies are presented to assess the influence of the VIV criteria on the results of the optimization tool.

This content is only available via PDF.
You do not currently have access to this content.