This paper presents an experimental investigation and validation of numerical prediction model for a 2-DOF VIV of a flexibly mounted circular cylinder by also accounting for the effect of geometrically nonlinear displacement coupling. A mechanical spring-cylinder system, achieving a low equivalent mass ratio in both in-line and cross-flow directions, is tested in a water towing tank and subject to a uniform steady flow in a sub-critical Reynolds number range of about 2000–50000. A generalized numerical model is based on double Duffing-van der Pol (structure-wake) oscillators which can capture the structural geometrical coupling and fluid-structure interaction effects through system cubic and quadratic nonlinearities. Experimental results are compared with numerical predictions in terms of response amplitudes, lock-in ranges and time-varying trajectories of cross-flow/in-line motions. Some good qualitative and quantitative agreements are found which encourage the use of the proposed numerical model subject to calibration and tuning of empirical coefficients. Various features of figure-of-eight orbital motions due to dual resonances are observed experimentally as well as numerically, depending on the natural frequency ratio of the oscillating cylinder.

This content is only available via PDF.
You do not currently have access to this content.