In this paper, a two-dimensional (2D) porous model is established to investigate the predication of the wave-induced pore pressure accumulations in marine sediments. In the new model, the VARANS equation is used as the governing equation for the wave motion, while the Biot’s consolidation theory is used for porous seabed. The present model is verified with the previous experimental data [1] and provides a better prediction of pore pressure accumulation than the previous solution [2]. With the new model, a 2D liquefied zone is formed at the beginning of the process, and then gradually move down. After a certain wave cycle (for example, 30 wave cycles in the numerical example), the liquefaction zone will become one-dimensional (1D) and continuously move down and eventually approaches to a constant. Numerical results also conclude the maximum liquefaction depth increases as wave height increases and in shallow water.

This content is only available via PDF.
You do not currently have access to this content.