Integrated Marine Monitoring Systems (IMMS) are designed to help operators to reduce operational risk by providing information about the environment and the platform responses in real time. In spite of efforts to keep monitoring systems in working condition by following planned maintenance and upgrades, some sensors may fail intermittently or may generate spurious data. Quite often, intervention to repair or to replace a faulty sensor is either difficult, or even not feasible.

This paper discusses various methods to estimate critical platform integrity parameters with satisfactory confidence in the cases when direct measurements are temporarily unavailable or questionable. Methods such as Artificial Neural Network and Extended Kalman Filter have been employed and specifically tuned to particular challenges.

Estimated results for the missing data, such as platform position or riser loads, are reliable as they have been validated against historically good data.

The merit of the paper is to present the methods that can increase reliability of the IMMS, enhance safety, reduce operational risk and decrease cost in maintaining expensive offshore systems.

This content is only available via PDF.
You do not currently have access to this content.