Under cyclonic conditions, sediment on the North West Shelf (NWS) of Australia may become mobile in shallow water due to classical sediment transport or local liquefaction, and this can affect, for example, the on-bottom stability of subsea pipelines. In this paper, three calcareous sediments sampled from the NWS are analysed, together with realistic metocean data, to illustrate this potential for sediment mobility on the NWS. Specifically, experiments are performed in a recirculating flume (known as an O-Tube) to measure the erosional behaviour and an additional series of experiments are performed using a shaking table, on which each of the sediments have been liquefied and excess pore pressure measurements recorded to back calculate the consolidation coefficient. Soil characterisation data, threshold velocity measurements and shaking table results have then combined to illustrate the potential for sediment mobility for each of the NWS sediments. Best practice models are used to calculate wave and current combined shear stress at the seabed and excess pore pressure accumulation. We find that for these sediments, freshly deposited in laboratory samples, mobility due to sediment transport or liquefaction is very likely in cyclonic conditions on the NWS. Liquefaction is most likely for loosely packed silt, whilst sediment transport is most likely for sand. However, we also show that in more extreme cyclonic conditions there are a subset of sediments that can become mobile due to both sediment transport and liquefaction.

This content is only available via PDF.
You do not currently have access to this content.