Subsea pipelines are subject to load effects from external hydrostatic pressure, internal pressure, operating temperature, ambient temperature and external reactions (e.g. seabed, structural support). These parameters influence the effective axial force that governs the pipeline global buckling response. Other factors, including installation stress, seabed slope, soil type, and embedment depth, can influence the pipe effective force.
Pipelines laid on the seabed surface or with limited embedment may experience lateral buckling. The resultant mode response is a complex function related to the spatial variation in these parameters and kinematic boundary conditions.
In this paper, results from a parameter study, using calibrated numerical modelling procedures, on lateral buckling of subsea pipelines are presented. The parameters included pipe diameter to wall thickness (D/t) ratio, pipe out of straightness (OOS), operating temperature and internal pressure, external pressure associated with the installation depth, and seabed lateral and axial friction properties.