In the reliability engineering and design of offshore structures probabilistic approaches are frequently adopted. They require the estimation of extreme quantiles of oceanographic data based on the statistical information. Due to strong correlation between such random variables as e.g. wave heights and wind speeds, application of the multivariate, or bivariate in the simplest case, extreme value theory is sometimes necessary.

The paper focuses on the extension of the ACER method for prediction of extreme value statistics to the case of bivariate time series. Using the ACER method it is possible to provide an estimate of the exact extreme value distribution of a univariate time series. This is obtained by introducing a cascade of conditioning approximations to the exact extreme value distribution. When this cascade has converged, an estimate of the exact distribution has been obtained. In this paper it will be shown how the univariate ACER method can be extended in a natural way to also cover the case of bivariate data. Application of the bivariate ACER method will also be demonstrated at the measured coupled wind speed and wave height data.

This content is only available via PDF.
You do not currently have access to this content.