In order to design a reliable floating structure, the hydrodynamic motion and structural performance under wave loadings should be reduced with the effects of wave-induced hydraulic pressure acting on the floating structure. In this study, analytical studies were carried out for optimum type to reduce the hydrodynamic motion and pressure of concrete floating structure. The optimum floating structure is combined with pontoon-type and hybrid-type floating structures, called combination-type floating structure. In order to verify reducing motion and improving structural performance of combination-type floating structure, analytical studies were carried out for the floating structures. After hydrodynamic analysis, the six degree motions of structure are investigated for fifth periods in shallow water. The hydrodynamic motions of combination-type are lower than other type of floating structures. It meant that the combination-type floating structure can be very efficient to reduce the wave forces acting on structures and be slightly influenced by the incident waves. In addition, to evaluate structural performance of floating structures under the critical wave load that presents maximum motion of floating structure. As the results of this study, the combination-type floating structure identified reducing hydrodynamic motion and excellent structural performance than other floating structures. However, high concentrated stress occurred at the edge of the bottom slab of the bow and stern parts where cylinder wall was connected to the bottom slab. Therefore, some alternatives which can be easily obtained from a simply modification of structural details are proposed to overcome these problems.

This content is only available via PDF.
You do not currently have access to this content.