In this study, in order to evaluate water damping effects of hybrid pontoon system with cylinders, experimental studies were carried out. At first, in order to evaluate oscillatory motions, three small-scale models of hybrid, tapered, and pontoon were fabricated and tested under the still-water condition. Four acceleration gauges were attached on the top edges and acceleration of top edge were measured during the oscillation. Then, oscillatory motions of oscillation period and stabilizing time to steady-state were analyzed. Finally, based on the oscillatory motions, damping properties of the logarithmic decrement, damping ratio, and natural frequency of damped system were calculated and compared with each other. As the results of this study, it was found that hybrid model presented about 3.67 times higher decay rate of amplitude of the oscillatory motion than the pontoon model. Also, hybrid model presented about 3.67 times higher damping ratio than the pontoon model. Whereas the natural frequency of the pontoon and tapered model were nearly same with the natural frequency of undamped system, that of the hybrid model presented some difference with the that of the undamped system. In addition, periods of floating body at the wet mode presented about 1.5∼3.0 times longer periods than the dry mode, and it was expected that there was not possibility for the resonance. Therefore, it was expected that the hybrid model of this study should contribute to improve serviceability and safety of offshore floating structures as decreasing oscillatory motions.

This content is only available via PDF.
You do not currently have access to this content.