A floating oscillating water column device (OWC) consists of a vertical cylinder, with a finite wall thickness, partly submerged as an open-bottom chamber in which air is trapped above the inner water free surface. The chamber is connected with the outer atmosphere by a duct housing an air turbine. Forced by incident waves from any direction, the water surface inside pushes the dry air above through a Wells turbine system to generate power. In the present contribution the volume flows, the wave forces, the added mass and damping coefficients and the mean second-order loads for various configurations of OWC devices are being presented. Finally, it is tested how differentiations in the device’s geometry (wall thickness, draught, shape of the chamber, turbine characterises) affect the inner pressure and as a result the absorbed power by the device.

This content is only available via PDF.
You do not currently have access to this content.