It is well established that strakes are effective at suppressing vortex-induced vibrations (VIV). Fairings are an attractive alternative to helical strakes, because they are a low drag VIV suppression solution. The paper presents an evaluation of a fairing design, based on numerical simulations — to be complemented at a later stage with current tank testing. This paper documents the computational fluid dynamics (CFD) and finite element analysis (FEA) of the evaluation: (1) 3-D CFD in the laboratory scale: 4.5 inch pipe, 3 ft/s current speed, (2) 3-D CFD in the full scale: 14 inch riser, 4 knots current speed, and (3) 3-D FEA of the full-scale fairing module latching mechanism, under service loads corresponding to 4 knots current speed. The analysis results show that the fairing design (1) is effective at suppressing VIV, (2) yields a low drag coefficient (0.52 at Re ∼ 106), and (3) its latching mechanism is adequate for use in calm sea states with 4 knots current speeds.

This content is only available via PDF.
You do not currently have access to this content.