Flow around a pipeline near the seabed still remains relatively unknown in spite of the efforts of many researchers to understand the complicated flow around bluff bodies. The present study contributes to this discussion numerically investigating two-dimensional fluid flow around a circular cylinder near a flat plate. The investigation contemplates Reynolds numbers of 100, 180 and 7000 and a gap ratio (G/D) of 3, 0.6, 0.3 and 0.125. The flow is simulated considering a finite difference and total variation diminishing (TVD) conservative scheme with a Chimera domain division method to solve RANS equations. The k-e turbulence model is used to simulate the turbulent flow in the high Reynolds number case. Results are obtained for force coefficients and flow visualization. The results show a significant variation of flow characteristics with gap ratio and Reynolds number variation.

This content is only available via PDF.
You do not currently have access to this content.