The severe ecological and economical aftermath of the 2010 ‘Deepwater Horizon’ catastrophe in the Gulf of Mexico clearly shows the insufficiency of current oil recovery systems which cannot operate in wave heights above 1.5m. To prevent emulsification and weathering processes, it is necessary to skim the oil film off the sea surface shortly after the accident. The autonomous SOS (Sea State-independent Oil Skimming System) developed within the framework of the research project SOS3 features high transit velocities, the capability of operating in rough seas and a massive intake of oil polluted water — and is therefore a unique technology. The oil water separation process of the SOS is purely based on hydrodynamic principles involving vortex evolution and a special flow pattern inside the internal moon pool. These requirements for efficient oil skimming operations depend on various hydrodynamic effects that would imply model testing in compliance with Froude’s and Reynolds’ law simultaneously — a physically impossible condition. Therefore GeoSim model tests with the SOS at model scales of 1:16, 1:25 and 1:36 are conducted with discrete particles of the correct density substituting the oil phase. The tendencies in flow pattern evolution and oil skimming efficiency are compared and extrapolated to full scale. Results from open water tests with the prototype of the SOS in the mouth of river Elbe serve for validation of the extrapolated results.

This content is only available via PDF.
You do not currently have access to this content.