This study aims to analyze the influence of the kinetic energy of the fluid adjacent to the hull of a tanker ship in its vertical vibration frequencies, comparing them with experimental measurements obtained during sea-trials. The one-dimensional modeling of ships allows the construction of simple finite element models from the structural elements of its master section, with structural and added masses, and their frequencies are verified by full-scale measurements, during the sea-trials. The numerical results of these models, with the value of the effective shear area as a fraction of the total area of the strength steel are compared to those obtained in full-scale measurements during sea trials of an oil tanker to be converted to Offshore Construction Vessel. Global vibration measurements were carried out in two of the six ships with the same hull. Accelerometers were installed in eleven strategic points of each hull. Vibration data acquisition was performed simultaneously for these locals in thirteen rotations of the main engine. The amplitude spectra of vibration velocity on the frequency range of measurements were obtained and were plotted graphs of the evolution of the main harmonics, depending on the rotation of the main engine, in order to identify four natural frequencies of the overall vibration of the hull, which were compared to the numerical model. The calculation is performed by the added mass formulations from Burrill, Todd, Kumay and Lewis/Landweber [8] curves, including in all three-dimensional effect by Townsin [17] coefficients, which is checked against the experimental results. The comparison between numerical and experimental results allows assessing the influence of the kinetic energy of the fluid surrounding the hull in the natural frequencies of vibration of the numerical model of the tanker ship and simulating their dynamic behavior after conversion in Offshore Construction Vessel.

This content is only available via PDF.
You do not currently have access to this content.